MODELS OF HEAT TRANSFER OF A COOLED ac CONDUCTOR

Yu., M, L'vovskii UDC 536.483: 621,31

Models are proposed for the heat transfer of an ac conductor cooled by a cryogenic liquid,
On the basis of numerical solutions, various thermal situations are analyzed.

The heat transfer at cryogenic temperatures of a cooled dc conductor was considered in detail in [1], in
which thermal phenomena in such eryogenic systems were discussed and recommendations for the calculation
and thermal stabilization of such systems were given. The thermal state of a stabilized ac superconductor
cooled by a cryogenic liquid was first investigated in [2~4] from the viewpoint of emergencies in such systems
and thermal stability., However, there was no detailed discussion of the accurate description of nonsteady heat
transfer, and the steady heat~transfer coefficient was used everywhere in the calculations,

In the present work, the nonsteady thermal processes in a homogeneous ac conductor immersed in a
bath of cryogenic liquid (helium) are considered., Models are proposed for the description of nonsteady heat
transfer in the system in the case of currents of low and high frequency, and the limits of their applicability
are indicated. Numerical implementation of the models permits a detailed analysis of the nonsteady thermal
field and various situations — in particular, overheating of the conductor — taking into account the real non-
linear temperature dependences of the specific heat and resistivity of the conductor,

The conductor is assumed either to be hollow, with a wall thickness of fractions of millimeter, or else
to consist of thin strands, so that the skin effect may be neglected even at the lowest temperatures. Since the
conductor is homogeneous and of sufficiently large thermal conductivity, the temperature difference along the
conductor is neglected, as is its variation over the cross section, which estimates show to be acceptable,

Under these assumptions, the thermal state of the conductor is described by the nonlinear nonsteady
thermal-balance equation

ar - B()e(D)
dt S
Here p is the resistivity of the conductor; C is its specific heat; ITand S are, respectively, its perimeter and
cross section; I¢t) is the current flowing along the conductor; and g is the heat flux per unit surface of the con-
ductor in the cooling liquid.
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To simplify the discussion, the origin of the time coordinate is shifted, and the basic frequency w of the
process is taken to be twice the current frequency, so that it is written in the form I¢t)=iv2sin [ w/2)t + (r/4)],
whereisisavirtual value, The temperature scale is also shifted, so that the temperature of the coolant
liquid at infinity is zero. Scaling C and p with respect to their values at some characteristic temperature T,
the time with respect to 1/w, and the heat flux q with respect to Ty, corresponding to heat transfer from the
level T, with a steady coefficient @, Eq. (1) may be brought to dimensionless form (the primes on the dimension~
less quantities are omitted):
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Two dimensionless complexes determine the thermal conditions in the problem: x=i2p,/a[IST, which depends
on the current i and is an analog of the Steckley parameter for stabilized superconductors, and @ = CywS/ay1l,
characterizing the heat-liberation frequency w.

It is simple to estimate the temperature pulsations of the conductor under the assumption that the non~
steady heat flux q() is of the same order of magnitude as the steady expression a(T)T. Assuming that the
temperature oscillates with the small amplitude 6T about some value (T) > 0T, the linearized relation (2)
yields a solution of the form
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to assume that the pulsations are small when 2>>1, Estimates show that even for a continuous copper con-
ductor of diameter 5 mm at a current frequency of 50 Hz, with film boiling of the helium, the parameter
is close to unity. The parameter % is also of order unity in real power systems [1], Thus, the temperature
of the given conductor oscillates with considerable amplitude. This means that accurate solution of the non-
linear problem is necessary, and, hence, the description of the nonsteady heat flux q).

where (T ) =« , so that 8T/<T>~1/Q. Hence, it is only correct

Two limiting cases are possible, At sufficiently small frequencies, the system is able, as it adjusts at
each moment of time, to respond to the whole temperature variation of the conductor. In this ease, it is pos-
gible to use the quasisteady approximation

g=a(T)T. )

The heat-transfer coefficient &(T) is the same as in the steady case, and all the time variation is included
in T(t).

At sufficiently high frequencies, the coolant liquid cannot respond, in the hydrodynamic sense, to the
temperature pulsations of the conductor wall: No new vapor bubbles form in the case of boiling, appropriate
adjustments to the flow are impossible in the case of single-phase convection, ete. The thermal perturbations
are transmitted in the liquid solely by heat conduction, Therefore, in this case the thermal flux q ) consists
of a steady flux with 2 mean temperature level qg¢=a ((T)){T) and a nonsteady increment dgponst due to heat
conduction. To determine this increment, the thermal boundary layer around the conductor will be taken to
be plane. The linear heat-conduction equation 9T/dt = g 82T /8x%, written in dimensionless variables, yields a
solution dying out along the x axis in the liquid:

OO

T (x, t)=T°exp(-——‘/7:)?x)sin(mt—~l/2(:;: x)—}—(T), (5)

where a is the thermal diffusivity of the coolant and T? is the amplitude of the temperature oscillations at

the wall, The depth of penetration of the thermal perturbations into the liquid falls as \/ac7w with increase

in frequency. For liquid helium in the case of film boiling at a frequency of 50 Hz the penetration depth is
about 0.012 mm, and in the case of convection in supercritical helium it is about 0.007 mm, which justifies

the assumption that the boundary layer is plane, The dimensionless steady heat flux in the coolant correspond~
ing to Eq. (5) is

TO . f n
=1 — t4+ —|,
g=n T sin ( + 2 \) (6)
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where 1= 0\0/0‘0)‘/ @/ac); Ac is the thermal conductivity of the coolant,

In the problem under consideration, the dimensionless temperature of the conductor may be written as a
Fourier series

T=(T) -+ 21 T, sin(nt +q,) = (T)—;—Zl(An-sinnt—!—Bncosnt). )

Therefore, taking into account Eq. (6), the total heat flux in the liquid q () =qst +6anonst is the given model is

g)=a((TH)(TY ~n ¥ V7 Tysin (nt+q>n+%>. @
n==1 \

In the case of free convection this approach4 corresponds to the Lighthill approximation [5] and holds as long
as the amplitude Tp is not too large.

To solve the problem in the case of large frequencies, Eq, (8) must be substituted into Eq. (2). After
equating corresponding harmonics in Eq. (2), an infinite algebraic system of equations in the coefficients A,
and B, is obtained; this system may be solved numerically if a finite number of harmonics Ty is taken. To
obtain the solution, the harmonic functions p ) and C(T) must be expressed in terms of Ay and Bp. At helium
temperatures the dependence of the resistance and the specific heat on the absolute temperature may be written
in the form [6])

O (T) = pps +0,T% C(T) =C,T+C,T% 9

816



Tedious calculations lead to the expressions
1
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which are then used in Eq, @) to solve the given model.

Consideration of Eq. (8) indicates that the transition frequency from the quasisteady description in Eq.
(4) to the description in Eq. (8) is characterized by the characteristic times of the elementary heat-transfer

processes

o = 2m/t, (10)

ars

In the case of the bubble boiling of helium, Tophq r is the time of bubble growth, equal to about 0.03 sec accord-
ing to estimates using the formulas of [7]; in the case of laminar convection in supercritical helium it is-the
time for adjustment of the convective fluxes, which is found to be about 0,15 sec in an estimate according to
(8, 91.

As well as Eq. (10), there is one other constraint on the use of the quasisteady approximation; thisarises
because it is not possible, in the steady heat-transfer coefficient a, to take account of the correction due to
nonsteady molecular heat conduction, increasing as vw with increase in frequency in accordance with Eq. (6).
For the quasisteady approximation to be valid, it is necessary for the frequency to be less than

o =a; aj/Al. (11)

The applicability of the nonsteady model (8) is also associated with Eq. (11); it is only for frequencies not less
than w" in order of magnitude that the value of 1 in Eq. (6) is not too small, and the amplitude of the tempera-
ture pulsations is significantly less than the mean value of the temperature, which must be the case if Eq. (8)
is to be used. Both for film boiling of helium and for convection in supercritical helium, Eq, (11) is satisfied
at current frequencies of about 50 Hz.

From the foregoing it follows that to calculate transient processes with frequencies of the order of 1 Hz
the quasisteady approximation may be used, while for operating conditions of the system with a current frequency
of 50 Hz, Eq. (8) may be used.

Numerical calculations of both models have been made on 2 BESM-6 computer.

In the quasisteady approximation Eq. (2),together with Eq. (4), was solved by the Runge—Kutta method.
The function «(T) was approximated by the dependence T%%  which is acceptable for film boiling and free con-
vection [4]. The steady solution was expanded in Fourier series,

In the large~-frequency case, the system of nonlinear algebraic equations in A, and B, was solved by the
optimum-search method. Three harmonics were found to be sufficient; the error due to discarding the other
terms was then satisfactorily small, since numerical calculation shows that further increase in the number of
harmonics does not lead to perceptible change in the results, The coefficient  in Eq. (6) was written in the
form n =1,YQ, where n; was taken equal to 0.1, 0.3, and 1; this corresponds to film boiling for a conductor of
diameter 10 cm, 1 cm, and 1 mm and for convection in supercritical helium for a conductor of diameter about
20 cm, 2 cm, and 2 mm, respectively.

The results show that steady conditions set in some time after the beginning of the process, and this
time increases with increase in . Note that for both models the mean temperature (T} of the conductor, in~-
creasing with increase in the current, is largely independent of change in @ even up to the highest frequencies.
Therefore, to determine (T) approximately, it is in most cases sufficient, in practice, using the analogy with
the dc case, to solve the equation wp ({T))=c ({T)){T) .
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Fig. 1. Amplitude of first harmonic temperature pulsa-
tions of conductor, Curves 1-3 correspond to thequasi~
steady approximation: »=1,0 (1), 0.8 (2), and 0.4 (3).
Curves 4-6 correspond to the high~frequency approxima~
tion (8) »=0.4; n;=0.1 (4), 0.3 (5), and 1.0 (6).
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Fig. 2. The dependence of n4/% 4 on Q: 1) R;=0.2; 2) 0,5; 3) 0.8;
4) 1.0.

Fig. 3. Dependence of phase of first temperature harmonic on 2
Gy=0.7, R;=0.8): 1) n=0,4; 2) 0.8; 3) 1.0 (quasisteady approxima-
tion),

The dependence on { of the amplitude of the first and higher harmonics is shown in Fig. 1, It is evident
that in both models the amplitude of the pulsations falls with increase in frequency, the pulsations being some~
what smaller in the high-frequency approximation than in the quasisteady case.

Steady thermal conditions are observed as long as the current does not exceed some critical value specific
to each @ [3]. If the conductor is loaded by a current above this value, the temperature begins to pulsate and
to increase catastrophically, and the conductor may burn out. This overheating is associated with the non~
linear dependence p(T), since in the de case [1], at sufficiently high 1, the heat-liberation curve 120(T)/S is
everywhere above the heat-extraction curve aIIT, heat liberation always predominates over heat extraction,
and no stable state of the conductor exists. For the ac case the situation is analogous [2-4]. The effective
value of the current at which the stable state existing at lower currents disappears will be called the over-
heating current ix. Under ac conditions, overheating sets in at currents less than the value i,=,, corresponding
to the de case; as shown in [3], the ratio M*/ni varies from 0.5 as @ — 0 (because of the lack of thermal
inertia, the amplitude value of the current i,v?2 coincides with iy) to unity as @ —«, The precise course of
the curve of nx/%% as a function of € depends on the relations between the coefficients in Eq. @), i.e., on
the conductor material. The ratios of the last terms in Eq. (9) to the total values of p and C at some character-
istic temperature will be denoted by R, and G,, respectively, The R, characterizes the frequency of the con-
ductor [6]: As the impurity is decreased, sotoothe contribution ofthe residual resistance ppe g diminishes, and
R, approaches unity. The dependence of % 4/%y onQ is shown in Fig. 2 for different values of Rybut for the con-
stant value G,=0,7. It is evident that decrease in R, is associated with decrease in the frequency at which the
analogy with the dc case becomes applicable. Less pure materials give a smaller error in calculating the
overheating by the simple de¢ formulas,
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Consideration of the phase of the first temperature harmonic under steady conditions leads to another
interesting conclusion (Fig, 3). When the current does not exceed the eritical value i, for any frequency
curve 1), the phase changes from zero at small frequencies (the system is warmed through) to —7/2 as
Q —o, since Eq, (3) is valid in this region. If the current exceeds the critical value at some frequency (curves
2 and 3), then in the region close to overheating (i <ix) the phase decreases, tending to —r/2 in the immediate
vicinity of overheating. (Note that the time required to establish thermal equilibrium increases with approach
to overheating.) This behavior of the phase is observed in both models for any values of R, and G,. Analytical
consideration at large Q also confirms this result: Everywhere close to overheating ¢, ——7/2, Hence, the
phase of the temperature just before overheating may be judged from the extent to which the current approaches
the danger value ix.

NOTATION

t, time; T, temperature; Ty, ¢y, amplitude and phase of the n-th temperature harmonic of the conductor;
I, i, instantaneous and effective values of the current; w, angular frequency of heat liberation; g, resistivity;
C, specific heat of conductor; II, perimeter; S, cross~sectional area of conductor; q, heat flux; «, steady heat~
transfer coefficient; ac, Ac, thermal diffusivity and thermal conductivity of coolant; Tohap, characteristic time
of elementary heat-liberation process; Ry, Gy, dimensionless parameters characterizing the form of the func-
tions ¢ (T) and C(T); %, 2, n, 1y, dimensionless parameters; iy, effective value of ac current corresponding to
overheating of the conductor; iy, dc current corresponding to overheating.
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