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Models  a r e  p roposed  fo r  the heat t r a n s f e r  of an ac conductor  cooled by a c ryogenic  liquid. 
On the bas i s  of numer i ca l  solut ions,  var ious  t he rma l  si tuations a r e  analyzed.  

The heat t r a n s f e r  at  cryogenic  t e m p e r a t u r e s  of a cooled dc conductor  was cons idered  in detail  in [1], in 
which t h e r m a l  phenomena in such cryogenic  s y s t e m s  were  d iscussed  and recommenda t ions  for  the calculat ion 
and t h e r m a l  s tabi l iza t ion  of such s y s t e m s  were  given. The t h e r m a l  s ta te  of a s tabi l ized ac superconductor  
cooled by a c ryogenic  liquid was f i r s t  invest igated in [2-4] f rom the viewpoint of emergenc ie s  in such sy s t ems  
and t h e r m a l  s tabi l i ty .  However ,  t he r e  was no detai led d iscuss ion  of the accura t e  descr ip t ion  of nonsteady heat 
t r a n s f e r ,  and the s teady h e a t - t r a n s f e r  coeff icient  was used eve rywhere  in the ca lcula t ions .  

In the p re sen t  work,  the nonsteady t h e r m a l  p r o c e s s e s  in a homogeneous ac conductor  i m m e r s e d  in a 
bath of c ryogenic  liquid (helium) a r e  cons idered .  Models a r e  p roposed  for  the descr ip t ion  of nonsteady heat 
t r a n s f e r  in the s y s t e m  in the case  of cu r r en t s  of low and high frequency,  and the l imi t s  of the i r  applicabi l i ty  
a r e  indicated.  Numerical  implementa t ion  of the models  p e r m i t s  a detai led analys is  of the nonsteady t h e rma l  
field and var ious  si tuat ions - in pa r t i cu la r ,  overheat ing of the conductor  - taking into account the rea l  non- 
l inea r  t e m p e r a t u r e  dependences of the specif ic  heat  and res i s t iv i ty  of the conductor.  

The conductor  is a s sumed  e i ther  to be hollow, with a wall  th ickness  of f rac t ions  of m i l l ime te r ,  o r  e lse  
to cons i s t  of thin s t r ands ,  so that  the skin effect  may  be neglected even at the lowest  t e m p e r a t u r e s .  Since the 
conductor  is homogeneous and of sufficiently l a rge  t he rma l  conductivity,  the t e m p e r a t u r e  di f ference along the 
conductor  is neglected,  as is its va r ia t ion  ove r  the c r o s s  section,  which e s t ima te s  show to be  acceptable .  

Under these  assumpt ions ,  the t he rm a l  s ta te  of the conductor  is descr ibed  by the nonlinear  nonsteady 
t h e r m a l - b a l a n c e  equation 

C(T)S tiT----T------ lZ(t)p(T) q(t)II. (1) 
dt S 

Here  p is the r e s i s t iv i ty  of the conductor;  C is its specif ic  heat; 12 and S a r e ,  respec t ive ly ,  its p e r i m e t e r  and 
c r o s s  section; I(t) is the cu r r en t  flowing along the conductor;  and q is the heat flux pe r  unit su r face  of the con-  
ductor  in the cooling liquid. 

To s impl i fy  the d iscuss ion ,  the or igin of the t ime  coordinate  is shifted, and the bas ic  f requency w of the 
p r o c e s s  is t aken  to be twice the c u r r e n t  f requency,  so that it is wr i t ten  in the f o r m  I( t )=i  4 ~ s i n  [ (w/2)t + (~/4)]t 
where  is  i s  a v i r t u a l v a l u e .  The t e m p e r a t u r e  sca l e  is a l so  shifted, so that  the t e m p e r a t u r e  of the coolant 
liquid at infinity is ze ro .  Scaling C and p with r e spec t  to the i r  values a t  some  c h a r a c t e r i s t i c  t e m p e r a t u r e  T 0, 
the t ime  with r e spec t  to l /w, and the heat flux q with r e spec t  to a0T 0, cor responding  to heat t r a n s f e r  f r o m  the 
level  T o with a s teady coeff icient  a,  Eq. (1) may  be brought  to d imens ion less  fo rm (the p r i m e s  on the d imens ion-  
l e s s  quant i t ies  a r e  omitted):  

dT 
C (T) - -  = z (p (T) + p (T) sin t) - -  q (t). (2) 

dt 

Two d imens ion less  complexes  de t e rmine  the t he rma l  conditions in the p rob l em:  z=Fpo/~HSTo which depends 
on the cu r r en t  i and is an analog of the Steckley p a r a m e t e r  fo r  s tabi l ized superconductors ,  and 12 =C0wS/a011, 
cha rac t e r i z ing  the hea t - l i be ra t ion  f requency w. 

It is s imple  to e s t ima te  the t e m p e r a t u r e  pulsat ions of the conductor  under  the assumpt ion  that  the non- 
s teady heat flux q(t) is of the s a m e  o rde r  of magnitude as  the s teady express ion  (~(T)T. Assuming  that the 
t e m p e r a t u r e  osc i l la tes  with the sma l l  ampli tude 6T about some  value (T) >> 6T, the l inear ized  re la t ion  (2) 
yie lds  a solution of the fo rm 
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T =  ( T ) - - S T c o s t ,  (3) 

where  ( T )  ~ p ( ( T ) )  ~ , a n d 6 T  ~ P ( ( T ) )  • . . . . . . .  , so that 5T/<T> ~ 1]~2. Hence, it is only c o r r e c t  
~ ( < T > )  g~ C ( < T > )  

to a s s u m e  that  the pulsat ions  a r e  smal l  when ~ >> 1. Es t ima tes  show that  even for  a continuous copper  con-  
ductor  of d i a m e t e r  5 m m  at  a cu r r en t  f requency of 50 Hz, with f i lm boiling of the helium, the p a r a m e t e r  
is c lose  to unity. The p a r a m e t e r  ~ is a l so  of o r d e r  unity in rea l  power  s y s t e m s  [1]. Thus,  the t e m p e r a t u r e  
of the given conductor  osc i l la tes  with cons iderab le  ampli tude.  This means  that a ccu ra t e  solution of the non- 
l i nea r  p rob lem is n e c e s s a r y ,  and, hence,  the descr ip t ion  of the nonsteady heat  flux q(t). 

Two l imit ing ca se s  a r e  poss ib le .  At sufficiently smal l  f requencies ,  the s y s t e m  is able,  as  it adjusts  at 
each m o m e n t  of t ime ,  to respond to the whole t e m p e r a t u r e  var ia t ion  of the conductor.  In this  case ,  it is p o s -  
s ible  to use  the quas i s teady  approx imat ion  

q = a (T) r .  (4) 

The h e a t - t r a n s f e r  coeff icient  ot(T) is  the same as In the s teady case ,  and all  the t ime  var ia t ion  ts included 
in W(t). 

At sufficiently high f requencies ,  the coolant  liquid cannot respond,  in the hydrodynamic  sense ,  to the 
t e m p e r a t u r e  pulsa t ions  of the conductor  wall:  No new vapor  bubbles f o r m  in the case  of boiling, appropr i a t e  
ad jus tments  to the flow a r e  imposs ib le  in the ca se  of s ing le -phase  convection, etc. The t h e r m a l  pe r tu rba t ions  
a r e  t r ansmi t t ed  in the liquid solely by heat conduction. There fore ,  in this ca se  the t he rma l  flux q(t) cons i s t s  
of a s teady flux with a mean  t e m p e r a t u r e  level  qst  =~ ( ( T ) ) ( T )  and a nonsteady inc remen t  6qnons t due to heat 
conduction. To de t e rmine  this increment ,  the t h e r m a l  boundary l aye r  around the conductor  will be taken  to 
be plane.  The l inea r  heat -conduct ion equation 0 T / a t  = a a2T/0x 2, wr i t ten  in d imens ion le s s  va r iab les ,  yields a 
solution dying out along the x axis  in the liquid: 

T(x, t ) = r 0 e x p  - -  ~ x sin ~ t - -  ~ x + ( T ) ,  (5) 

where  a c is the t he rma l  diffusivity of the coolant and T O is the ampli tude of the t e m p e r a t u r e  osci l la t ions at 
the wall.  The depth of pene t ra t ion  of the t h e r m a l  pe r tu rba t ions  into the liquid fal ls  as ~ w~th inc rease  
in f requency.  For  liquid hel ium in the ca se  of f i lm boiling at a f requency of 50 Hz the pene t ra t ion  depth is 
about 0.012 ram,  and in the case  of convect ion in supe rc r i t t ca l  hel ium it  is about 0.007 ram, which just i f ies  
the assumpt ion  that the boundary l aye r  is plane.  The d imens ion less  s teady heat flux in the coolant  c o r r e s p o n d -  
ing to Eq. (5) is 

i 4) q = n T---0- sin t -k , (6) 

where  ~7 = ( X c / a 0 ) ~ ;  kc is the t h e r m a l  conductivity of the coolant.  

In the p r o b l e m  under  considerat ion,  the d imens ionless  t e m p e r a t u r e  of the  conductor  may  be wr i t t en  as  a 
Four i e r  s e r i e s  

T = < T ) + s T,~ sin (nt -4:- r = ( T ) 4- s (An. sin nt + B,  cos nt). (7) 
n ~ l  n-~l 

There fo re ,  taking into account Eq. (6), the total  heat  flux in the liquid q(t) =qs t  +Sqnonst i s  the given model  i s  

In the ca se  of f r ee  convect ion this approach  co r r e sponds  to the LighthUl approximat ion  [5] and holds as long 
as  the ampli tude Tn is  not too la rge .  

To solve the p r o b l e m  in the case  of l a rge  f requencies ,  Eq. (8) mus t  be  subst i tuted into Eq. (2). Af t e r  
equating cor responding  harmonics  in Eq. (2), an  infinite a lgebra ic  s y s t e m  of equations in the coeff ic ients  A n 
and B n is obtained; this  s y s t e m  may  be solved numer ica l ly  if a finite number  of ha rmonics  Tn is taken.  To 
obtain the solution, the harmonic  functions O(t) and C(T) mus t  be e x p r e s s e d  in t e r m s  of An and B n. At hel ium 
t e m p e r a t u r e s  the dependence of the r e s i s t a n c e  and the specif ic  heat  on the absolute  t e m p e r a t u r e  m a y  b e w r i t t e n  
t n t h e  f o r m  [6] 

p(T) = Pres + P~ Ts, C(T) = C~T-}- C~T 3. (9) 
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Tedious calcula t ions  lead to the express ions  
l 

1 
Ta=- '4  " Z ~ {(aA'B'Bh--(--1)~+'A'AaAk)sin[i+(--1)~]+ 

I~,-~= 0 i,i,t=O 

+ (--  1) ~ k] t + (BiB~B~- 3 (--  1) ~ A~AjBh)cos [i + ( - -  1) ~ ] + ( - -  1) v kl t}, 
1 

l#,• 
l~ ,~ ,8 ,e=0  i,],lr 

• AiAjAj, BzB ~ + 5 A~BjBhBlBm) sin [i + ( - -  1) ~ ] + (--  1) ~ k + 

+ (--  I) 61 + ( - -  1) ~ m] t + (BiBjBhBzBm --  10 (- -  1) ~ A~AjB~BzBr~ + 

+ 5 (--  1)a+~+SA,A~A~AzBm)cos [i + ( - -  1)~]+ (--  1)vk+ (--1)~l+ (--  l)em] t}, 

which a r e  then used in Eq. (9) to solve the given model .  

Cons idera t ion  of Eq. (8) indicates  that the t rans i t ion  f requency f r o m  the quas is teady descr ip t ion  in Eq. 
(4) to the descr ip t ion  in Eq. (8) is cha r ac t e r i z ed  by the c h a r a c t e r i s t i c  t imes  of the e l e m e n t a r y  h e a t - t r a n s f e r  
p r o c e s s e s  

co'= 2n/~char ' (10) 

In the case  of the bubble boiling of hel ium, r c h a r  is the t ime  of bubble growth,  equal to about 0.03 sec a c c o r d -  
trig to e s t ima te s  using the fo rmulas  of [7]; in the case  of l amina r  convect ion in supe rc r i t i c a l  hel ium it is. the 
t i m e  for  ad jus tment  of the convect ive  f luxes,  which is found to be about 0.15 sec in an es t ima te  according to 

iS, 9]. 

As well  as Eq. 0 0), there  is one other  cons t ra in t  on the use  of the quas is teady approximat ion;  this a r i s e s  
because  it is not poss ib le ,  in the s teady h e a t - t r a n s f e r  coefficient  c~, to take account of the co r r ec t i on  due to 
nonsteady m o l e c u l a r  heat conduction, inc reas ing  as q-~-with inc rease  in f requency in accordance  with Eq. (6). 
For  the quas i s teady  approx imat ion  to be  valid,  it is n e c e s s a r y  for  the f requency to be l ess  than 

o~" = a~ O~o=/~. (11) 

The appl icabi l i ty  of the nonsteady model  (8) is a l so  assoc ia ted  with Eq. (11); it is only for  f requenc ies  not l ess  
than w" in o r d e r  of magni tude that the value of ~ in Eq. {6) is not too smal l ,  and the ampli tude of the t e m p e r a -  
t u r e  pulsat ions is significantly l ess  than the mean  value of the t e m p e r a t u r e ,  which mus t  be the ca se  if Eq. (8) 
is to be used. Both for  f i lm boiling of hel ium and for  convect ion in superc r i t i ca l  helium, Eq. (11) is sa t is f ied 
a t  cu r r en t  f requenc ies  of about 50 Hz. 

F r o m  the foregoing it follows that to ca lcula te  t r ans ien t  p r o c e s s e s  with f requencies  of the o r d e r  of 1 Hz 
the quas is teady approx imat ion  may  be used, while for  operat ing conditions of the s y s t e m  with a cu r ren t  f requency 
of 50 Hz, Eq. (8) may  be used. 

Numerical  calcula t ions  of both models  have been made  on a BI~SM-6 compute r .  

In the quas i s teady  approx imat ion  Eq.  (2), toge ther  with Eq. (4), was  solved by the R u n g e - K u t t a  method.  
The function a(T) was approximated  by the dependence T 0"25, which is acceptab le  for  f i lm boiling and f r ee  con-  
vect ion [4]. The s teady solution was expanded in Four i e r  s e r i e s .  

In the l a rge - f r equency  case ,  the s y s t e m  of nonl inear  a lgebra ic  equations in A n and B n was solved by the 
o p t i m u m - s e a r c h  method.  Th ree  ha rmonics  were  found to be sufficient;  the e r r o r  due to d iscarding the o ther  
t e r m s  was then sa t i s fac to r i ly  smal l ,  s ince numer ica l  calculat ion shows that  fu r the r  i nc rea se  in the number  of 
ha rmon ics  does not lead to pe rcep t ib le  change in the resu l t s .  The coeff icient  77 in Eq. (6) was wr i t ten  in the 
f o r m  ~ =~714~-, where  ~?, was taken equal to 0.1, 0.3, and 1; this co r r e sponds  to f i lm boiling for  a conductor  of 
d i ame te r  10 cm,  1 cm,  and 1 m m  and for  convect ion in supe rc r i t t ca l  hel ium for  a conductor  of d i a m e t e r  about 
20 cm,  2 cm,  and 2 ram, respec t ive ly .  

The r e su l t s  show that s teady conditions se t  in some  t ime  a f t e r  the beginning of the p r o c e s s ,  and this 
t ime  i n c r e a s e s  with i nc rea se  in ft. Note that fo r  both models  the mean  t e m p e r a t u r e  (T} of the conductor,  in- 
c r ea s ing  with i n c r e a s e  in the cur ren t ,  is l a rge ly  independent of change in ft even up to the highest f requencies .  
The re fo re ,  to de t e rmine  (T} approximate ly ,  it is in m o s t  cases  sufficient,  in p rac t i ce ,  using the analogy with 
the dc case ,  to solve the equation ~p( (T) )=c~  ( ( T ) ) ( T }  . 
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Fig. ) .  Amplitude of f i r s t  harmonic  t e m p e r a t u r e  pu l sa -  
t ions of conductor .  Curves  1-3 co r respond  to t h e q u a s i -  
s teady approximat ion:  • = 1.0 (1), 0.8 (2), and 0.4 (3). 
Curves  4-6 cor respond  to the h igh-frequency a p p r o x i m a -  
t ion (8) x =0.4; ~l =0.1 (4), 0.3 (5), and 1.0 (6). 
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Fig. 2. The dependence of x , / x ~  o n e :  1) R0=0.2; 2) 0.5; 3) 0.8; 
4) 1.0. 

Fig. 3. Dependence of phase  of f i r s t  t e m p e r a t u r e  harmonic  on g2 
(G0=0.7, R0 = 0.8): 1) x=  0.4; 2) 0.8; 3) 1.0 (quasisteady a p p r o x i m a -  
tion). 

The dependence on ~2 of the ampli tude of the f i r s t  and higher  ha rmonics  is shown in Fig. 1. It is evident 
that  in both models  the ampli tude of the pulsat ions falls  with inc rease  in frequency,  the pulsat ions  being s o m e -  
what  s m a l l e r  in the h igh-f requency approx imat ion  than in the quas is teady case .  

Steady t he r m a l  conditions a r e  observed  as long as the cu r r en t  does not exceed  some c r i t i ca l  value specif ic  
to each ~2 [3]. If the conductor  is loaded by a c u r r e n t  above this value, the t e m p e r a t u r e  begins to pulsa te  and 
to inc rease  ca tas t rophica l ly ,  and the conductor  m a y  burn  out. This overheat ing is a s soc ia ted  with the non- 
l inear  dependence p(T), s ince in the dc case  [1], at sufficiently high I, the hea t - l ibe ra t ion  curve  I2p(T)/S is 
eve rywhere  above the hea t -ex t rac t ion  curve  a I1T, heat l ibera t ion always p redomina tes  ove r  heat  extract ion,  
and no s table  s ta te  of the conductor  exis ts .  For  the ac case  the si tuat ion is analogous [2-4]. The effect ive 
value of the cu r r e n t  at  which the s table  s ta te  exist ing at lower  cu r r en t s  d i sappears  will be  cal led the o v e r -  
heating cu r r en t  i , .  Under  ac conditions, overheat ing sets  in at cu r r en t s  l ess  than the value i F cor responding  
to the dc case ;  as shown in [3], the ra t io  x , / x ~  va r i e s  f r o m  0.5 as ~ ~ 0 (because of the lack of t h e r m a l  
iner t ia ,  the ampli tude value of the cu r r en t  i .~r2-coincides with IF) to unity as g2 _ o o  The p r e c i s e  cou r se  of 
the curve  of ~ , / •  as  a function of ~2 depends on the re la t ions  between the coeff ic ients  in Eq. (9), i .e. ,  on 
the conductor  m a t e r i a l .  The ra t ios  of the las t  t e r m s  in Eq. (9) to the total  values of p and C at  some  c h a r a c t e r -  
ist ic t e m p e r a t u r e  will be denoted by R 0 and Gn, respec t ive ly .  The Rn c h a r a c t e r i z e s  the f requency of the con-  
ductor  [6]: As the impur i ty  is dec reased ,  so too the  cont r ibu t ionof the  res idua l  r e s i s t ance  P r e s d i m i n i s h e s ,  and 
R 0 approaches  unity. The dependence of ~ , / ~  on ~ is shown in Fig.  2 f o r d i f f e r e n t v a l u e s o f R 0 b u t f o r t h e  con- 
stant value G o = 0.7. It is evident that d e c r e a s e  in R 0 is a ssoc ia ted  with dec r ea se  in the f requency at which the 
analogy with the dc case  becomes  appl icable .  Less  pure  m a t e r i a l s  give a s m a l l e r  e r r o r  in calculat ing the 
overheat ing by the s imple  dc fo rmulas .  
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Consideration of the phase of the first  temperature harmonic under steady conditions leads to another 
interesting conclusion (Fig. 3). When the current  does not exceed the critical value i .  for any frequency 
(curve 1), the phase changes from zero at small frequencies (the system is warmed through) to - ~ / 2  as 
~2 --% since Eq. (3) is valid in this region. If the current  exceeds the cri t ical  value at some frequency (curves 
2 and 3), then in the region close to overheating (i < i . )  the phase decreases,  tending to - ~ / 2  in the immediate 
vicinity of overheating. (Note that the t ime required to establish thermal equilibrium increases with approach 
to overheating.) This behavior of the phase is observed in both models for any values of R 0 and G 0. Analytical 
consideration at large ~ also confirms this result:  Everywhere close to overheating (Pl-~-v/2- Hence, the 
phase of the temperature  just before overheating may be judged from the extent to which the current  approaches 
the danger value i . .  

N O T A T I O N  

t, time; T, temperature;  T n, q~n, amplitude and phase of the n-th temperature harmonic of the conductor; 
I, i, instantaneous and effective values of the current;  w, angular frequency of heat liberation; p, resistivity; 
C, specific heat of conductor; II, per imeter ;  S, cross-sect ional  area of conductor; q, heat flux; a, steady heat- 
t ransfer  coefficient; a c, Xc, thermal diffusivity and thermal conductivity of coolant; Vchar, character is t ic  t ime 
of elementary heat-l iberation process;  R 0, Go, dimensionless parameters  characterizing the form of the func- 
tions p (T) and C (T); 4 ,  ~, 77, ~71, dimensionless parameters ;  i . ,  effective value of ac current  corresponding to 
overheating of the conductor; i F, dc current  corresponding to overheating. 
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